新闻中心

News Center

 Firstrate Sensor 2023 Annual Party and  New Year Celebration
Firstrate Sensor 2023 Annual Party and New Year Celebration
On February 4th, 2024, the Firstrate Sensor 2023 Annual Commendation Conference and Annual Partywere held grandly at the Xinyuan White Swan Hotel. First's special guests, company leaders, retired employees and all working Firstrate team gathered together to celebrate the grand ceremony!   1. Annual meeting lottery     During the banquet, the company also carefully planned an exciting lottery session, which pushed the joyful atmosphere to a climax again. When the host announced the winners of each award in turn, the audience burst into applause, no matter on the faces of the winners The overflowing smiles and the applause and blessings of the non-winners all demonstrated the strong spirit of friendship and unity among the team.      2. Group photo at the annual meeting     During the group photo session, all employees gathered together with smiles on their faces and firm eyes. In front of the camera, they are not only witnesses of the company's development, but also an important force driving the company forward. These group photos are like vivid pictures, recording the spirit of sharing glory and unity at this moment, and showing the high-spirited and enterprising collective style of all members of the company.     In the new year, Firstrate wishes you all good luck in the Year of the Dragon, happiness to your family, and all the best! To learn more, please contact the Firstrate team.  
2024-02-23
What is wind sensor and how wind sensor works
What is wind sensor and how wind sensor works
What is wind sensor and how wind sensor works?      The wind speed sensor is a professional meteorological instrument used to measure the horizontal speed of wind. It uses a traditional three wind cups wind speed sensor structure that is highly durable.     In addition, thanks to its smooth bearing system, it starts smoothly and ensures accurate data collection. The built-in signal processing unit in the cup can output the corresponding wind speed signal according to the user's demand, which can be widely used in the fields of meteorology, ocean, environment, airport, harbor, laboratory, industry and agriculture, and transportation.       What is a Wind Speed Sensor?     wind speed sensors are devices designed to continually gauge both wind speed and wind volume (calculated as wind speed multiplied by the cross-sectional area). A prevalent type of wind speed sensor is the wind cup anemometer, believed to have been initially developed by Robinson. The measurement component consists of three or four hemispherical wind cups, evenly arranged and affixed in one direction on a rotating support fixed vertically to the ground.           What is a Wind Direction Sensor?     Wind direction sensors are engineered instruments that determine the direction from which the wind is blowing. Utilizing technologies such as vane sensors and windsocks, they provide essential data for applications like weather forecasting and aviation.     How Does a Wind Speed Sensor Work?     Wind speed sensors operate on principles such as cup anemometry. Picture small cups exposed to the wind—when they rotate, the sensor measures the rotational speed. This speed is then converted into electrical signals, offering accurate wind speed measurements.     The wind speed sensor is a professional meteorological instrument used to measure the horizontal speed of wind. It uses a traditional three wind cups wind speed sensor structure that is highly durable. In addition, thanks to its smooth bearing system, it starts smoothly and ensures accurate data collection. The built-in signal processing unit in the cup can output the corresponding wind speed signal according to the user's demand, which can be widely used in the fields of meteorology, ocean, environment, airport, harbor, laboratory, industry and agriculture, and transportation.   How Does a Wind Direction Sensor Work?     Wind direction sensors, often using vane technology, determine wind direction by measuring the orientation of a vane in relation to the incoming wind. This angular information is then translated into accurate directional data.       The wind direction sensor detects and senses the wind direction information of the outside world by the rotation of the wind direction arrow, and transmits it to the coaxial code disk, and outputs a physical device corresponding to the wind direction related value; its main body adopts the mechanical structure of the wind vane, and when the wind blows towards the tail of the wind vane, the arrow of the wind vane will point to the direction of the wind blowing over. In order to maintain sensitivity to direction, different internal mechanisms are also used to give direction to the wind speed sensor.     How Does an Ultrasonic Wind Speed and Direction Sensor Work?     The working principle of ultrasonic wind speed and direction sensor is to utilize ultrasonic time difference method to realize the measurement of wind speed and direction. As the sound propagation speed in the air, will be superimposed with the airflow speed in the direction of the wind. If the propagation direction of ultrasound is the same as the wind direction, then its speed will be accelerated; on the contrary, if the propagation direction of ultrasound if the opposite direction of the wind, then its speed will be slowed down. Therefore, under fixed detection conditions, the speed of ultrasonic wave propagation in the air can correspond to the wind speed function. The precise wind speed and direction can be obtained by calculation. Since the speed of the sound wave propagating in the air is greatly affected by the temperature; the wind speed sensor detects two opposite directions on two channels, so the effect of temperature on the speed of the sound wave is negligible.   Advantages:   Precision: Ultrasonic wind sensors provide highly accurate wind speed and direction measurements, minimizing errors in data collection.   Durability: With no moving parts, ultrasonic sensors experience less wear and tear, resulting in a longer lifespan.   Low Maintenance: The absence of mechanical components reduces maintenance needs, making ultrasonic sensors a cost-effective choice.       How to Install Wind Speed Sensors and Tips?     Adopt flange mounting, threaded flange connection to make the wind speed sensor lower fittings firmly fixed in the flange, chassis Ø65mm, in the circumference of Ø47.1mm open four are Ø6mm mounting holes, the u
2024-01-11
3 Types of Pressure Sensors and Applications
3 Types of Pressure Sensors and Applications
3 Types of Pressure Sensors and Applications   What is pressure sensor?   The pressure sensor is the most commonly used in industrial practice, a sensor, which is widely used in a variety of industrial self-control environments, according to different types of test pressure, pressure sensors can be divided into three common types: gauge pressure sensors, differential pressure sensors and adiabatic pressure sensors, mainly used in water conservancy and hydropower, railroad transportation, intelligent buildings, production automation, aerospace, military, petrochemical, oil wells, electric power, ships, machine tools, pipelines and many other industries. There are so many different types of pressure sensors on the market today that it may take some time to figure out their differences.Nonetheless, sensors can be categorized to a large extent according to their type of pressure measurement, the sensing principle used the output signal and the measurement medium.         3 Types of Pressure Sensors and Applications   Below we will briefly describe the different types of pressure sensors to help you understand your options. Pressure sensors can be categorized into three main modes of measurement:There are various types of pressure sensors, but the main categories are: absolute pressure sensors, gauge pressure sensors and differential pressure sensors, each designed for a specific application. Before you choose the right sensor, you should understand each sensor type and the scenario in which it is applied. It is vital that you choose the correct type of pressure sensor for your application. Ignoring this can lead to measurement errors and system performance failures. In the following article, we will briefly introduce the three pressure sensor types and relate some common application examples to each.     1. Gauge Pressure   Measured with reference to atmospheric pressure (usually 14.7 PSI). Gauge pressure to atmospheric pressure as a reference fluid indicator pressure, can be measured by a pressure sensor, called gauge pressure, that is: absolute pressure - atmospheric pressure = gauge pressure. Gauge pressure in the vacuum industry specifically refers to: the value of the relative pressure of the gas measured with an ordinary vacuum gauge (relative pressure gauge), expressed as a negative number, refers to the difference between the pressure of the gas being measured and the atmospheric pressure. Also called negative pressure. When higher than atmospheric pressure, you will show a "positive" pressure; when lower than atmospheric pressure, you will show a "negative" pressure.     2. Absolute pressure In short, this is the pressure measured relative to an absolute vacuum. The absolute pressure of a complete vacuum is zero PSI and increases from there. Absolute pressure is pressure relative to zero pressure. Correspondingly, Gauge Pressure (Relative Pressure) : If the difference between Absolute Pressure and Atmospheric Pressure is a positive value, then this positive value is the Gauge Pressure . For example, we are in the environment for a standard atmospheric pressure, then the absolute pressure is 1 atm, gauge pressure is 0 Pa. That is, gauge pressure = absolute pressure - atmospheric pressure > 0. If it is less than 0, it is called vacuum. Absolute pressure PaA, gauge pressure PaG. If you need to read pressure below atmospheric pressure, you can use this type of sensor.     3. "Differential pressure". It's exactly what it sounds like, the difference between two pressures, the pressure being measured and the reference pressure.     Application Scenarios   There are many types of pressure sensors, but they fall into one of these three main categories: absolute pressure sensors, gauge pressure sensors, and differential pressure sensors, each designed for a specific application. Here are some typical applications for each type.       A.Absolute pressure sensors:   Weather forecasting: Absolute pressure sensors are used in weather stations and meteorological instruments to measure atmospheric pressure, which is critical for weather forecasting. Vacuum Systems: Absolute pressure sensors are used in vacuum systems to monitor and control vacuum levels in applications such as semiconductor manufacturing and vacuum packaging. Barometric Pressure Measurement: Consumer devices such as smartphones and smartwatches use absolute pressure sensors to provide altitude and weather information for activities such as GPS navigation and fitness tracking. Aerospace: Absolute pressure sensors are used in airplanes and spacecraft for altitude measurement, cabin pressure control and hydraulic system monitoring.     B.Gauge Pressure Sensors:   Automotive: Gauge pressure sensors are commonly used in automotive engines to measure manifold pressure to optimize fuel injection and engine performance. Industrial Automation: Gauge pressure sensors are used in industrial automat
2023-09-22
Firstrate-IOTE 2023 The 20th International Internet of Things Exhibition Shenzhen
Firstrate-IOTE 2023 The 20th International Internet of Things Exhibition Shenzhen
Highlights of the IOTE 2023 The 20th International Internet of Things Exhibition     The 20th International Internet of Things Exhibition Shenzhen Station of IOTE2023 will be held at Shenzhen International Convention and Exhibition Center (Baoan) from September 20 to 22, 2023, bringing together more than 600+ exhibitors from around the world and 130,000+ people from industry, logistics, and infrastructure. Professional integrators and end users in the fields of construction, smart cities, and smart retail visited the exhibition.         "New infrastructure" has laid a solid foundation for the development of the Internet of Things. The demand released by "internal and external dual circulation" has become the most fertile soil for the development of the Internet of Things. A trillion-level market is no longer a slogan. It is time to develop the Internet of Things. In this In the "golden period" of the development of the Internet of Things industry, it is even more necessary for the IOTE International Internet of Things Exhibition to gather the resources of the entire Internet of Things industry.   ‘’   Firstrate will bring series of products and IoT system solutions such as intelligent environment, intelligent agriculture, intelligent fire protection, intelligent water, intelligent pipeline corridor, intelligent property, intelligent manhole cover IoT transmission layer (5G), IoT pressure/temperature/level, gas monitoring, wind speed and wind direction monitoring, garbage overflow monitoring, infrared temperature monitoring multi-parameter water quality on-line analyzer, and so on, to appear in this exhibition.       Firstrate IoT system through the Internet of Things, cloud computing, big data artificial intelligence and other new generation of information technology applications, can be adapted to the complex access environment, large-scale device connectivity needs, low-cost, flexible and rapid deployment of various types of innovative Internet of Things applications.     If you are interested in IoT sensors, please contact Firstrate team for the latest consultation and assistance.        
2023-09-20
Industrial Pressure Sensors in Fire Water System Monitoring
Industrial Pressure Sensors in Fire Water System Monitoring
Industrial Pressure Sensors in Fire Water System Monitoring In industrial settings, safety is of utmost concern, especially when it comes to fire prevention and control. Industrial pressure sensors play a pivotal role in ensuring the effective operation of fire water systems. This article sheds light on the critical role of industrial pressure sensors in fire water system monitoring, their functionality, and the benefits they bring to safeguarding industrial facilities.     Industrial Pressure Sensors in Fire Water System Monitoring: Fire incidents can lead to catastrophic damage in industrial environments. A well-designed fire water system, backed by precise monitoring using industrial pressure sensors, is essential for quick response and effective control. These sensors help maintain optimal water pressure levels, ensuring that fire hydrants, sprinklers, and suppression systems function seamlessly when needed the most.   How Industrial Pressure Sensors Work in Fire Water Systems: Industrial pressure sensors are strategically installed within fire water systems to continuously monitor water pressure. When a fire event occurs, these sensors detect pressure drops and trigger automated responses. The sensors transmit real-time data to control centers, alerting personnel to potential issues or deviations. This timely information empowers responders to take immediate action, preventing potential disasters.   Benefits of Using Industrial Pressure Sensors:   Rapid Detection: Industrial pressure sensors provide instant detection of pressure variations, enabling swift identification of potential fire incidents. Automatic Activation: These sensors trigger automated responses, activating fire suppression systems and facilitating timely intervention. Minimized Damage: Timely detection and response minimize fire damage, reducing downtime and associated costs. Remote Monitoring: Remote data transmission allows for real-time monitoring of fire water systems, enabling proactive maintenance and troubleshooting. Enhanced Safety: By ensuring effective fire suppression, industrial pressure sensors contribute to the safety of personnel, assets, and the surrounding environment. Regulatory Compliance: Many industries are subject to stringent safety regulations; utilizing industrial pressure sensors helps meet compliance standards. Cost Efficiency: Preventing major fire incidents through efficient monitoring can significantly reduce repair and recovery expenses.     Conclusion: Industrial pressure sensors are unsung heroes in ensuring the safety of industrial facilities against fire hazards. With their ability to provide real-time data, trigger swift responses, and facilitate early intervention, these sensors play a vital role in preventing disasters and minimizing damage. In industries where safety is paramount, such as manufacturing, energy, and logistics, the integration of industrial pressure sensors within fire water systems is a proactive step towards safeguarding operations, assets, and lives. 
2023-08-26
Engineering Explosion-Proof Pressure Sensors: Technology, Functions, and Applications
Engineering Explosion-Proof Pressure Sensors: Technology, Functions, and Applications
Engineering Explosion-Proof Pressure Sensors: Technology, Functions, and Applications     An explosion-proof piece of equipment is a necessity for industrial settings where safety is paramount. Explosion-proof pressure measurements play a crucial role in operational safety by accurately measuring pressure in potentially hazardous environments. In this article, we delve into the essentials of explosion-proof pressure sensors, their operation, and the diverse applications they cater to.   What are explosion-proof pressure sensors?   An explosion-proof pressure sensor is a device that operates without interruption in flammable environments containing flammable gases, vapors, or combustible dust particles. These sensors are constructed to contain any internal explosion and prevent external ignition sources, thereby mitigating the risk of catastrophic incidents. They are commonly used in the oil and gas, chemical, and manufacturing industries.   How do explosion-proof pressure sensors work?   In addition to the same principles as regular pressure sensors, explosion-proof pressure sensors contain potential explosions. These sensors consist of a robust housing that is hermetically sealed and designed to withstand pressure buildup without causing external sparks. Within this housing, a sensing element measures pressure changes and converts them into electrical signals. The electrical components are encapsulated in such a way that even if an internal explosion occurs, it doesn't propagate outside the sensor, thus ensuring safety.   Applications of explosion-proof pressure sensors:   Oil and Gas Industry: These sensors are crucial for monitoring pressure in drilling operations, pipelines, and refining processes where volatile substances are present. Chemical Manufacturing: Explosion-proof pressure sensors help regulate pressure in reactors, storage tanks, and chemical processing units. Mining Operations: They are used in coal mines and other potentially explosive mining environments to monitor pressure and prevent hazards. Manufacturing and Processing Plants: In facilities handling flammable materials, these sensors ensure safe pressure control at various stages of production. Aerospace and Defense: Explosion-proof pressure sensors find applications in aircraft fuel systems and military equipment where safety and reliability are paramount. Pharmaceuticals: These sensors are utilized in processes involving volatile compounds, ensuring safety while maintaining quality control. Wastewater Treatment: In potentially explosive atmospheres, such as sewage treatment plants, these sensors help monitor pressure at various stages of wastewater treatment. Energy Production: They are employed in power plants to monitor pressure in steam boilers and fuel storage, minimizing risks associated with explosions.     Conclusion: The importance of explosion-proof pressure sensors cannot be overstated in industries where safety is a top priority. These robust devices ensure accurate pressure measurement while safeguarding against potential explosions, making them indispensable in hazardous environments. Whether in oil refineries, chemical plants, or mining operations, explosion-proof pressure sensors serve as a critical layer of protection, enabling industries to operate efficiently and securely. For more insights into the world of explosion-proof pressure sensors and their evolving applications, stay connected to our website.
2023-08-18
Previous page
1
2
23
Username used for comment:
版权留言
Description:

v

Contact us
Tel:
+86 731-86171990
Email: sales@firstratesensor.com
Address: 4th Floor, Building 1, Zhitingyuan, Zhenhua Road, Yuhua District, Changsha City, Hunan Province,China.

Hunan Firstrate Sensor Co.,Ltd

Whatsapp

We use cookies to improve our site and your shopping experience. By continuing to browse our site you accept our cookie policy. Find out more
Accept